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Abstract In the present work, Li@porphyrins and their
derivatives were designed in order to explore the effect of
dehydrogenation/hydrogenation on linear and nonlinear op-
tical properties. Their stable structures were obtained by the
M06-2X method. Moreover, the M06-2X method showed
that dehydrogenation/hydrogenation has greatly influences
polarizabilities (α0 values) and hyperpolarizabilities (βtot
and γtot values): α0 values ranged from 331 to 389 au, βtot
values from 0 to 2465 au, and γtot values from −21.2×104 to
21.4×104 au. This new knowledge of the effect of dehydro-
genation/hydrogenation on nonlinear optical properties may
prove beneficial to the design and development of high-
performance porphyrin materials.

Keywords Li@porphyrins . Dehydrogenation/hydrogenation
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Introduction

Nonlinear optical materials have been extensively explored
over the past few decades due to their potential applications
in optical and electro-optical devices [1–7]. Both experi-
mental and theoretical studies have been carried out to
search for methods of enhancing the nonlinear optical
responses of materials [8–35]. Such methods include in-
creasing the length of the π-conjugated chain, enhancing

the combination of the donor and acceptor strength, increas-
ing push–pull effects, utilizing twisted π-electron systems,
and doping the ligand metal into organic compounds.
In particular, Li-doped systems have systematically been
explored by Li’s group [3, 8, 9, 11, 12, 16, 17, 20, 24]
and, intriguingly, they found that electrides possess rather
large first hyperpolarizabilities. This result stimulated our
curiosity.

Electrides [36, 37] were first proposed by Dye. In elec-
trides, anionic sites are occupied by loosely bound excess
electrons. The central premise for the formation of stable
electrides is that alkali metal atoms can be captured by
a nonreducible cryptand complexant. Unfortunately, most
conventional organic electrides are sensitive to temperature
and air [38, 39] due to the reductive rupture of oxygen–
carbon bonds in oxygen-based cryptand complexants.
Hence, Dye put forward a practical way to search for
thermally stable organic electrides: replace oxygen with
nitrogen.

In light of the issues and results discussed above, Li’s
group chose a novel class of organic electrides as the focus
of their research. Calix[4]pyrrole [8, 9] with a cone confor-
mation [40] was employed as the cryptand complexant, and
an alkali lithium atom was trapped in the calix[4]pyrrole.
However, to the best of our knowledge, the calix[4]pyrrole
framework consists of four separate pyrrole subunits. This
leads to an interesting question: how do the four conjugated
pyrrole subunits interact with alkali atoms?

In order to uncover the answer to this question, we
investigated the linear and nonlinear optical properties of
Li@porphyrins and their derivatives (seen in Fig. 1), and the
results of this investigation are provided in this paper. 1 is
obtained by removing one of the H atoms connected to an N
atoms in 2a/2b, and 0 is obtained by removing another H
atom from 1; this is called the dehydrogenation effect [41].
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On the other hand, 3 is obtained by introducing one H
atom onto one of the N atoms that does not have any H
atoms in 2a /2b. Then 4 is obtained by introducing an H
atom onto an N atom that does not have an H atom in 3;
this is called the hydrogenation effect [42]. It is worth
mentioning that the differences among 0, 1, 2a, 2b, 3, and
4 are the positions that undergo dehydrogenation/hydro-
genation and the number of H atoms. Thus, 0, 1/2a, 2b/3,
and 4 were investigated in order to get a comprehensive

understanding of how the dehydrogenation/hydrogenation
influences the linear and nonlinear optical properties of
these materials. Additionally, we hope that our work will
provide a new strategy for designing and synthesizing
novel NLO materials via the dehydrogenation/hydrogena-
tion effect.

Theoretical methodologies

According to our previous work [43], structural optimiza-
tion by the novel hybrid meta exchange correlation func-
tional M06-2X, as proposed by Zhao and co-workers [44,
45], yields good results, and the basis set 6-31G(d) also
performs well. Thus, in this work, the stable geometrical
structures of 0, 1, 2a, 2b, 3, and 4, all with real frequencies,
were obtained using the M06-2X/6-31G(d) method. Natural
bond order (NBO) charges of Li+ were calculated at the
M06-2X/6-31G(d) level of theory. To the best of our knowl-
edge, it is very important to use an accurate method of
calculating polarizabilities and first hyperpolarizabilities.
However, most conventional methods of doing this have
been reported to give inaccurate values for the (hyper)po-
larizability [46]. Fortunately, three new DFT exchange cor-
relation functionals (M06-2X [44, 45], CAM-B3LYP [47],
and BHandHLYP [48]) that possess a good balance between
quality and efficiency have been shown to lead to more
accurate values for the (hyper)polarizabilities of π-
conjugated systems than other methods [49–51]. Hence, in
this work, these three different DFT exchange correlation
functionals were adopted in order to explore the linear and
nonlinear properties of the materials of interest. The 6-31+G
(d) basis set was employed for C, N, H, and Li atoms.

The polarizability was defined as follows:

a0 ¼ 1

3
axx þ ayy þ azz

� �
: ð1Þ

Fig. 1 The stable geometrical structures of 0, 1, 2a, 2b, 3, and 4, all
with real frequencies, which were obtained using the M06-2X/6-31G
(d) method

Table 1 Geometrical parameters for 0, 1, 2a, 2b, 3, and 4, as calcu-
lated at the M06-2x/6-31G(d) level. The bond lengths (Å) of the four
N–Li bonds are listed. NBO charges on Li+ in 0, 1, 2a, 2b, 3, and 4
were calculated at the M06-2x/6-31G(d) Level

0 1 2a 2b 3 4

N1–Li 2.043 2.040 2.081 2.573 2.592 2.225

N2–Li 2.043 2.448 2.241 2.343 2.203 2.237

N3–Li 2.043 2.040 2.081 1.940 1.948 2.225

N4–Li 2.043 1.904 2.304 1.979 2.191 2.237

N–Lia 2.043 2.108 2.177 2.209 2.233 2.231

Li+ 0.611 0.641 0.729 0.737 0.782 0.827

a Mean (Å) of the N1–Li, N2–Li, N3–Li, and N4–Li bond lengths

Fig. 2 The α0 values of 0, 1, 2a, 2b, 3, and 4, as calculated by three
DFT methods
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The first hyperpolarizability was obtained as

btot ¼ b2x þ b2y þ b2z

� �1=2
; ð2Þ

where

bi ¼ biii þ bijj þ bikk; i; j; k ¼ x; y; z: ð3Þ
The second hyperpolarizability was calculated at the

M06-2X/6-31+G(d) level of theory as

g tot ¼
1

5
gxxxx þ gyyyy þ gzzzz
� �þ 2

5

� gxxyy þ gxxzz þ gyyzz
� �

: ð4Þ
Furthermore, frequency-dependent NLO properties were

evaluated using the coupled perturbed Kohn–Sham method

[52]. The frequency-dependent β was calculated as

b wð Þ ¼ b2x þ b2y þ b2z

� �1=2
; ð5Þ

where

bi ¼ biii �2w;w;wð Þ þ bijj �2w;w;wð Þ
þ bikk �2w;w;wð Þ ð6Þ

for the second-harmonic generation values and

bi ¼ biii �w;w; 0ð Þ þ bijj �w;w; 0ð Þ þ bikk �w;w; 0ð Þ ð7Þ
for the electro-optical Pockels effect values.

All of the calculations were performed with the Gaussian
09W software package [53].

Results and discussion

Geometrical parameters

The optimized structures of the Li@porphyrins and their
derivatives are given in Fig. 1. From Fig. 1, it is apparent
that the two hydrogen atoms bonded to the inwardly orien-
tated nitrogen atoms in 2a are opposite to each other, where-
as they are positioned ortho to each other in 2b. The
important structural parameters and NBO charges are col-
lected together in Table 1. Interestingly, due to the dehydro-
genation effect, the mean N–Li bond lengths in 0 and 1 are
smaller than that in 2a/2b. On the other hand, 3 and 4, which

Table 2 The α0 (au) and βtot
(au) values of 0, 1, 2a, 2b, 3, 4,
as calculated by the M06-2X,
CAM-B3LYP, and BHandHLYP
methods. ΔE (eV) and f0
were calculated at the M06-2X/
6-31+G(d) level. The γtot (au)
values were calculated at the
M06-2X/6-31+G(d) level

0 1 2a 2b 3 4

M06-2X α0 346 349 357 354 331 389

βx 0 −101 25 611 2452 −1

βy 0 4 −126 795 250 2

βz 0 24 21 41 48 221

βtot 0 104 130 1004 2465 221

CAM-B3LYP α0 354 352 366 359 334 411

βx 0 −113 96 981 2267 4

βy 0 1 −122 704 231 −3

βz 0 32 39 25 73 270

βtot 0 117 160 1208 2280 270

BHandHLYP α0 356 350 369 363 333 420

βx 0 −115 227 1542 2066 6

βy 0 4 −110 −459 210 −7

βz 0 33 76 −46 81 305

βtot 0 119 264 1609 2079 305

M06-2X ΔE 3.9400 3.6034 3.5601 3.5289 3.3727 3.5843

f0 0.1371 1.1243 0.4506 0.3366 0.4358 1.1566

M06-2X γtot×10
4 2.3 9.0 9.6 14.0 21.4 −21.2

Fig. 3 The βtot values of 0, 1, 2a, 2b, 3, and 4, as calculated by three
DFT methods
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form via the hydrogenation effect, have longer mean N–Li
bonds than 2a/2b. The mean length of the N–Li bond
increases in the order 0 (2.043 Å) < 1 (2.108 Å) < 2a
(2.177 Å) < 2b (2.209 Å) < 4 (2.231 Å) < 3 (2.233 Å).
Thus, 3 has the largest mean N–Li bond length. According
to natural bond orbital (NBO) analysis, this indicates that
the charge on Li in the six molecules increases as the
number of H atoms increases: 0 (0.611) < 1 (0.641) < 2a
(0.729) < 2b (0.737) < 3 (0.782) < 4 (0.827), meaning that
electrons transfer from the Li atom to the ligands.

According to the above analysis, the Li@porphyrin 3,
which is formed through the hydrogenation of 2a/2b, and has
the largest mean N–Li bond length, is special. Thus, we could
not help but wonder howmodifying the geometric structures of
2a/2b via the dehydrogenation/hydrogenation effect changes
the linear and nonlinear optical properties of these molecules?

Linear and nonlinear optical properties

Polarizability (α0)

The α0 values of 0, 1, 2a, 2b, 3, and 4 were calculated by the
M06-2X, CAM-B3LYP, and BHandHLYP methods, and
these values are collected in Fig. 2 and Table 2. It is clear
that the results calculated using M06-2X (which range from
331 to 389 au), CAM-B3LYP (334–411 au), and BHandH-
LYP (333–420 au) are very similar. For systems 0 and 1,
different trends are observed in the results obtained using
CAM-B3LYP, BHandHLYP, and M06-2X, but the values
are similar whichever method is used, so we chose to use the
M06-2X results to shed light on the changes in α0. The α0

values of 2a (357 au) and 2b (354 au) are also very close.
Compared to 2a/2b, the α0 value of 1 (formed via the
dehydrogenation effect) is slightly lower at 349 au (M06-
2X). The α0 value of 0 (346 au), obtained by dehydrogen-
ating 1, is very similar to the value for 1. Moreover, if we
consider the sequence of hydrogenation (0→ 1→ 2a/2b→
3 → 4), Fig. 2 shows that the value of α0 dips significantly
for 3 to 331 au. This interesting result may relate to the special
structure of 3. Upon hydrogenating 3, we find that the α0

value of 4 is increases sharply to 389 au, which is the largest
value among all of the Li@porphyrins considered here.

Static first hyperpolarizability (βtot)

Figure 3 presents the βtot values of the six molecules
obtained by three different methods. The trend in the βtot
values of the molecules was virtually the same whichever
method was used. Very recently, an important work was
published in which calculations of linear and nonlinear
optical properties using several exchange-correlation func-
tionals were performed [54]. The results showed that the
M06-HF and ωB97 exchange-correlation functionals pro-
vided a better linear correlation with experimental results.
Thus, we calculated the βtot value of 3 using the M06-HF
and ωB97 methods. The βtot value calculated by the M06-
2X method (2465 au) was very similar to that given by the
M06-HF (2420 au) and ωB97 (2345 au) methods. Thus, we
looked more closely at the M06-2X results in an attempt to
qualitatively understand the βtot values. 2a and 2b differ in
the relative positions of the two H atoms bonded with the
inwardly orientated N atoms. We wanted to know whether
this structural difference leads to differences in the βtot
value. Figure 3 shows that the βtot value of 2a (130 au) is
distinctly smaller than that of 2b (1004 au). The βtot value of
1, formed by the dehydrogenation of 2a/2b, is slightly lower
at 104 au. When 1 is subjected to dehydrogenation, 0 is
obtained, and the βtot value of 0 is approximately zero due to
its centrosymmetric structure. To our surprise, when we
considered the βtot values along the sequence of hydrogena-
tion (0→ 1→ 2a/2b→ 3→ 4), we noticed that there was a
peak that reached its maximum at 3 (2465 au). Interestingly,
4, formed by the hydrogenation of 3, shows a sharply
reduced βtot value of 221 au compared to 3. We found that
3 shows particular linear optical properties due to its special
structure. By carefully inspecting the molecular structure of
3, we elucidated that, under the action of the three H atoms

Fig. 4 ΔE values of 0, 1, 2a, 2b, 3, and 4, as calculated by TD-DFT/
M06-2X method

Table 3 The estimated coupled perturbed Kohn–Sham values of the frequency-dependent first hyperpolarizabilities of 3 (in au)

Frequency 0.0000 0.0050 0.0100 0.0200 0.0239 0.0400 0.0428

β(−ω,ω,0) 2465 2500 2560 2842 3043 6052 8307

β(−2ω,ω,ω) 2465 2518 2823 3220 3783 10168 14783
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bonded to N atoms, the Li atom is pushed away from the
central location, which leads to the largest mean N–Li bond
length. As we all know, the structure of a molecule largely
determines its chemical properties. Hence, the fact that the
largest βtot value is exhibited by 3 may relate to its interest-
ing chemical structure.

Investigating further, the transition energy (ΔE) and the
oscillator strength (f0) of each molecule calculated at the
TD-M06-2x/6-31+G(d) level are listed in Table 2. Accord-
ing to the two-level model [55, 56], f0 is inversely propor-
tional to the first hyperpolarizability, but the third power of
ΔE is inversely proportional to the first hyperpolarizability.
These results show that the trend in f0 is unclear. Thus, the
variation in βtot cannot be explained by f0. Figure 4 shows
that 0 has the largest ΔE value among the molecules
(3.9400 eV). The ΔE values of 1, 2a, and 2b are clearly
lower than that of 0, ranging from 3.5289 eV to 3.6034 eV. 3
yields the smallest ΔE value (3.3727 eV). Hydrogenating 3
leads to 4, and the ΔE of 4 is higher at 3.5843 eV than that
of 3. Hence, the variation in ΔE seen in Fig. 4 is opposite to
the trend noticed for βtot, suggesting that the trend in ΔE
provides a good explanation for the variation in βtot.

Static second hyperpolarizability (γtot)

The second hyperpolarizabilities of the six molecules are
collected in Table 2. The γtot value of 2a is 9.6×104 au,
whereas that of 2b is 14.0×104 au, which is about 1.5 times
greater than that of 2a. The different γtot values of 2a and 2b
indicate that the relative locations of the H atoms bonded to N
atoms have a major influence on the γtot values. Upon dehy-
drogenating 2a/2b, the γtot value decreases to 9.6×10

4 au (1).
With further dehydrogenation, the γtot value decreases to 2.3×
104 au (0). However, upon hydrogenating 2a/2b, the γtot value
increases to 21.4×104 au (3), and then to −21.2×104 au (4).
Thus, the dehydrogenation/hydrogenation effect also had a
major influence on the γtot values calculated in our work.

Frequency-dependent NLO properties

Studies of azo-enaminone isomers [57–59] indicate that the
dynamic first hyperpolarizabilities are also very important.
Thus, we investigated the frequency-dependent first hyper-
polarizabilities of 3 using the coupled perturbed Kohn–
Sham method. The results listed in Table 3 include second
harmonic generation (SHG) β(−2ω,ω,ω) and the electro-
optical Pockels effect (EOPE) β(−ω,ω,0), for which ω0
0.0000, 0.0050, 0.0010, 0.0200, 0.0239, 0.0400, and
0.0428 au. The results show that the values of β(−2ω,ω,ω)
and β(−ω,ω,0) are larger than the corresponding static βtot
values, and the values of β(−2ω,ω,ω) and β(−ω,ω,0) increase
with increasing frequency (ω) from 0.0000 to 0.0428 au.
Also, the values of β(−2ω,ω,ω) are all larger than the

corresponding values of β(−ω,ω,0) at ω00.0239 au (l0
1907 nm) and ω00.0428 au (l01064 nm), which shows
that the frequency-dependent effects on β(−2ω,ω,ω) are
stronger than those on β(−ω,ω,0) of 3. In addition, the
largest value of β(−2ω,ω,ω) is 14783 au, which is about
six times the static βtot value.

Conclusions

In this paper, the stable structures (all with real frequencies)
of the Li@porphyrins 0, 1 and 3, 4, obtained by the dehy-
drogenation and hydrogenation of 2a/2b, were obtained
using the M06-2X/6-31G(d) method. The natural bond or-
bital (NBO) charge of Li+ indicated that electrons transfer
from the Li atom to the ligands. Among the Li@porphyrins
studied, 3, which had the largest mean N–Li bond length, is
special: the α0 value of 3 calculated by M06-2X (331 au),
CAM-B3LYP (334 au), and BHandHLYP (333 au) was the
smallest, and the βtot value of 3 calculated by M06-2X
(2465 au), CAM-B3LYP (2280 au), and BHandHLYP
(2079 au) was the largest. In addition, the γtot value of 3
was the largest. The variation inΔE across the molecules, as
calculated by the TD-DFT/M06-2X method, is opposite to
the variation in βtot, so the trend in ΔE explains the trend in
βtot.

The results of our study enhance our understanding of the
structural sensitivity of nonlinear optical properties, and
should encourage scientists to consider the dehydrogenation/
hydrogenation effect when designing high-performance NLO
materials.
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Highlights

The Li@porphyrins 2a and 2b and their derivatives 0, 1 and 3, 4 were
designed based on the dehydrogenation /hydrogenation effect.

The charge on Li in the six molecules ranged from 0.611 to 0.827,
which indicates that electrons transfer from the Li atom to the ligands.

3 was found to have the smallest α0 value as well as the largest βtot
value and γtot value.

The interesting variation in the βtot values of the Li@porphyrins
observed in this work should encourage the consideration of the
dehydrogenation/hydrogenation effect when designing high-
performance NLO materials
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